本文共 6239 字,大约阅读时间需要 20 分钟。
作为DBA了解InnoDB的页组织方式是最基础的,在实际工作中,免不了会评估SQL会消耗多少IO,怎么评估呢?
作为InnoDB表和树的高度或者深度有关系。之前研究了半天:
根据Scholmi notes that there are two main features determining the depth of a B-tree (or B+-tree):The number of rows in the database. We’ll call that N.The size of the indexed key. Let’s call B the number of key that fit in a B-tree node. (Sometimes B is used to refer to the node size itself, rather than the number of keys it holds, but I hope my choice will make sense directly.)Given these quantities, the depth of a B-tree is logB N, give or take a little. That’s just (log N)/log B. Now we can rephrase Scholmi’s point as noting that small keys means a bigger B, which reduces (log N)/log B. If we cut the key size in half, then the depth of the B-tree goes from (log N)/log B to (log N)/log 2B (twice as many keys fit in the tree nodes), and that’s just (log N)/(1+log B).Let’s put some numbers in there. Say you have a billion rows, and you can currently fit 64 keys in a node. Then the depth of the tree is (log 109)/ log 64 ≈ 30/6 = 5. Now you rebuild the tree with keys half the size and you get log 109 / log 128 ≈ 30/7 = 4.3. Assuming the top 3 levels of the tree are in memory, then you go from 2 disk seeks on average to 1.3 disk seeks on average, for a 35% speedup.
里面算的不对,人肉算也没达到这个高度。也可能是我没有理解作者的意思,没有用对公式。那么根据结合前面的Innodb页结构,如何正确的获取数的高度呢?继续拿这个表举例子:
mysql> show create table sbtest1\G*************************** 1. row *************************** Table: sbtest1Create Table: CREATE TABLE `sbtest1` ( `id` int(11) NOT NULL AUTO_INCREMENT, `gmt_create` datetime NOT NULL, `gmt_modified` datetime NOT NULL, `k` int(11) NOT NULL DEFAULT '0', `c` varchar(500) NOT NULL DEFAULT '', `pad` char(60) NOT NULL DEFAULT '', `is_used` int(11) DEFAULT NULL, PRIMARY KEY (`id`), KEY `k_1` (`k`), KEY `idx_is_used` (`is_used`), KEY `idx_gmt_create` (`gmt_create`)) ENGINE=InnoDB AUTO_INCREMENT=69313841 DEFAULT CHARSET=latin11 row in set (0.00 sec)
[root@localhost mysql]# innodb_space -f test/sbtest1.ibd space-index-pages-summary | head -n 10page index level data free records3 74 2 5166 10904 3694 75 2 408 15834 245 76 2 486 15756 276 77 2 486 15756 277 74 0 15028 1192 688 74 0 15028 1192 689 74 1 14700 1030 105010 74 0 15028 1192 6811 74 0 15028 1192 68
page_level是2,所以这个树高度是page_level+1=3;
mysql> show global variables like "%innodb_page%";+----------------------+-------+| Variable_name | Value |+----------------------+-------+| innodb_page_cleaners | 1 || innodb_page_size | 16384 |+----------------------+-------+2 rows in set (0.00 sec)mysql> show table status like 'sbtest1'\G*************************** 1. row *************************** Name: sbtest1 Engine: InnoDB Version: 10 Row_format: Dynamic Rows: 25926320 Avg_row_length: 279 Data_length: 7254032384Max_data_length: 0 Index_length: 1293697024 Data_free: 3145728 Auto_increment: 69313841 Create_time: 2018-01-19 14:53:11 Update_time: NULL Check_time: NULL Collation: latin1_swedish_ci Checksum: NULL Create_options: Comment:1 row in set (0.00 sec)mysql> desc sbtest1;+--------------+--------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+--------------+--------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | auto_increment || gmt_create | datetime | NO | MUL | NULL | || gmt_modified | datetime | NO | | NULL | || k | int(11) | NO | MUL | 0 | || c | varchar(500) | NO | | | || pad | char(60) | NO | | | || is_used | int(11) | YES | MUL | NULL | |+--------------+--------------+------+-----+---------+----------------+
通常一棵B+树可以存放多少行数据?
这里我们先假设B+树高为2,即存在一个根节点和若干个叶子节点,那么这棵B+树的存放总记录数为:根节点指针数*单个叶子节点记录行数。上文我们已经说明单个叶子节点(页)中的记录数=16K/279=58。(我们从上面可以看到每行记录的数据平均大小为279个字节)。那么现在我们需要计算出非叶子节点能存放多少指针,其实这也很好算,表中的主键ID为int类型,长度为4字节,而指针大小在InnoDB源码中设置为6字节,这样一共10字节,我们一个页中能存放多少这样的单元,其实就代表有多少指针,即16384/10=1638。那么可以算出一棵高度为2的B+树,能存放1638*58=95004条这样的数据记录。根据同样的原理我们可以算出一个高度为3的B+树可以存放:1638*1638*58=155616552条这样的记录。高度为4的B+树可以存放:1638*1638*1638*58=254899912176条这样的记录。
而在实际应用中,大部分是以bigint作为主键的,主键ID为bigint类型,长度为8字节,而指针大小在InnoDB源码中设置为6字节,这样一共14字节,我们一个页中能存放多少这样的单元,其实就代表有多少指针,即16384/14=1170。根据同样的原理我们可以算出一个高度为2,3,4的B+树能够存放的记录数。
mysql> select count(*) from sbtest1;+----------+| count(*) |+----------+| 26313272 |+----------+1 row in set (4.23 sec)
我们的表一共是3层。
mysql> SELECT b.name, a.name, index_id, type, a.space, a.PAGE_NO FROM information_schema.INNODB_SYS_INDEXES a, information_schema.INNODB_SYS_TABLES b WHERE a.table_id = b.table_id AND a.space <> 0 and b.name='test/sbtest1';+--------------+----------------+----------+------+-------+---------+| name | name | index_id | type | space | PAGE_NO |+--------------+----------------+----------+------+-------+---------+| test/sbtest1 | PRIMARY | 74 | 3 | 45 | 3 || test/sbtest1 | k_1 | 75 | 0 | 45 | 4 || test/sbtest1 | idx_is_used | 76 | 0 | 45 | 5 || test/sbtest1 | idx_gmt_create | 77 | 0 | 45 | 6 |+--------------+----------------+----------+------+-------+---------+4 rows in set (0.00 sec)
primary key的高度是3,其他索引的可以看上表。
因为主键索引B+树的根页在整个表空间文件中的第3个页开始,所以可以算出它在文件中的偏移量:16384*3=49152(16384为页大小)。
另外根据《InnoDB存储引擎》中描述在根页的64偏移量位置前2个字节,保存了page level的值,因此我们想要的page level的值在整个文件中的偏移量为:16384*3+64=49152+64=49216,前2个字节中。
接下来我们用hexdump工具,查看表空间文件指定偏移量上的数据:
[root@localhost test]# hexdump -s 49216 -n 10 sbtest1.ibd000c040 0200 0000 0000 0000 4a00000c04a
page_level是2,B+树高度为page level+1=3
如果通过二级索引查找记录最多需要花费多少次IO呢?
从上面的图中可以看出需要花费:从二级索引找到主键+主键找到记录,比如二级索引有3层,聚簇索引有3层,那么最多花费的IO次数是:3+3=6姜承尧 《MySQL技术内幕:InnoDB存储引擎》
姜承尧 查看-innodb表中每个的索引高度/转载地址:http://wodox.baihongyu.com/